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ABSTRACT

In this work, the boundary face method (BFM) is applied to implement steady-state heat conduction
analysis of solids containing a large number of open-ended tubular shaped holes of small diameters. A
new meshing scheme is used to discretize the boundary integral equations (BIE) such that the holes
can be modeled by a small number of surface elements while keeps the exact geometry, resulting in sub-
stantial savings in both modeling effort and computational cost. In the scheme, each tubular pipe surface
is represented with a number of curvilinear tube elements similar to the ‘hole element’ proposed by
P.K. Banerjee. To model the end faces that are intersected by the tubular holes, a special triangular ele-
ment with negative parts is proposed. These elements are defined in the parametric space of the surface,
and the exact geometry data can be directly available from CAD models of the solids. Numerical examples
show that current implementation is very efficient in modeling of solids with many holes of arbitrary
shape. The temperature and flux on the pipe surfaces or inside solids are obtained with high accuracy,

even the local thermal concentration on and near the holes can be captured.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Structures containing many slender tubular shaped holes find
important application in engineering, such as cooling passages,
electrical wiring passages, etc. For instance, in concrete construc-
tion process, many water pipes are embedded to cool down the
dam. These pipes have significant influences on the resulting tem-
perature and flux distribution in a body and thus draw much atten-
tion of the design engineers to properly arrange these pipes.

The temperature and flux distribution in bodies with holes is
complicated and can only be understood with numerical methods,
such as the finite element method (FEM) or the boundary element
method (BEM). In numerical analysis of the problems related to
these bodies, two main difficulties arise. The first one is modeling
of small holes with arbitrary shape. The second is accurately cap-
turing the local thermal concentration caused by the holes. A
FEM discretization of the domain would be extremely complicated
to perform, especially when the diameters of the tubular holes are
very small, which may be of a lower scale than domain size. In
addition, the FEM requires a very fine mesh to accurately capturing
the local thermal concentration, which may beyond the current
computing power.
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Alternatively, the BEM has some distinct advantages over the
FEM for analyzing the problems involving the complicated geome-
tries, such as a surface discretization instead of the domain discret-
ization and thermal gradients can be captured more accurately.
However, in a conventional BEM analysis, modeling a small hole
still requires a very fine surface mesh. The fine mesh leads to a
large-scale computational cost. For a free shaped tubular hole, it
is a challenging task to generate surface elements with a suitable
quality. To simplify mesh generation as well as get a better effi-
ciency, a lot of efforts have been made [1-7]. The common idea
behind those works is developing different kinds of approximation
formulations of the BEM. The excellent work has been taken by
Banerjee et al. [2-7], in which the special formulation has been
developed by using the proposed ‘hole element’. Using the hole ele-
ment, the two-dimensional integration over the surface of the hole
is reduced to a one-dimensional line integration along its length by
carrying out an analytical integration in the circumferential direc-
tion. The pipe with circular cross section can be modelled by a small
number of hole elements, resulting in substantial saving in both
data preparation and computing cost. Unfortunately, this formula-
tion is under an assumption that the concerned hole is axisymmet-
ric in shape, thus suitable for straight cylindrical or conical holes
[3,4]. For curved pipes with variable diameters along their longitu-
dinal direction, there will be a problem in using the formulation.

In this paper the boundary face method (BFM) [8,9] is intro-
duced to analyze steady-state heat conduction problems of solids
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containing tubular shaped holes. In our implementation, all holes
are represented with parametric forms, which can be directly
derived from original CAD models of the solids. The two-dimen-
sional integrals over the surface of the hole are directly computed
in a numerical manner. A new type of surface element is developed
in numerical integration, in which the same trigonometric func-
tions from ‘hole elements’ is used. As a consequence, neither fine
traditional surface elements nor ‘hole elements’ are required for
modeling small holes. The holes with complex geometries, such
as the high variation of the curvature long its length and the arbi-
trary shaped cross section, can be described at an easy rate in the
BFM. In addition, the ‘hole elements’ cannot consider the case
where the holes intersect with the outer surface of the body, and
thus, in the previous works [1-6], the holes of practical structures
are treated as blind holes approximately. This treatment will intro-
duce local errors. In this paper, a new type of discontinuous bound-
ary elements with negative parts is designed to describe the ends
of the through holes.

This paper is organized as follows. The boundary integral equa-
tion formulation with end-opened tubular holes is firstly intro-
duced. This is followed by developing special surface elements
for modeling of these holes. Next, numerical examples for sample
problems are presented. Finally, the paper ends with conclusions
in Section 5.

2. Boundary integral equation formulation with end-opened
tubular holes

The BFM is a new implementation of the boundary node meth-
od (BNM) or BEM [9-14]. The boundary integral equations (BIE) are
commonly used in both methods. However, the BFM is imple-
mented based on CAD model with the boundary representation
(B-rep) data structure, in which all bounding surfaces are repre-
sented in parametric forms. Both boundary integration and vari-
able approximation are performed in the parametric space of the
concerned surface. The details of the implementation for the BFM
can be found in Refs. [8,9].

The self-regular BIE for steady-state heat conduction problems
is applicable in an analysis of a body containing end-opened tubu-
lar holes. This equation can be expressed as

0=l (1)

where

P= /r [G(s,y)(T(s) — T(y)) — F(s,y)q(s))dT°(s) 2)
M

H = Z /r” [G(s,¥)(T(s) = T(y)) — F(s7y)q(s)}d1~£{n(s) 3)
m=1 m

IV = Z /FV [G(s,¥)(T(s) = T(y)) — F(S7y)q(s)}d1~"{(s) )
k=1 k

in which:

T and g are boundary temperatures and fluxes;

y is the source point and s is the field point on the boundary;
G and F are the fundamental solutions of the 3D potential prob-
lems [8];

I'! is the surface of the mth hole;

I} is the kth triangular element with negative parts created by
open-ended holes;

I'° is the out surface of the body exception for the elements
with negative parts;

I° denotes the integrals over the I'°;

" and IV denote the integrals over the summation of the I'} and
I'Y, respectively;

M and K are the total number of the holes and the elements
with negative parts, respectively.

In the conventional discretization of Eq. (1), a very fine surface
mesh is required for the efficient modeling and analysis of holes. In
our implementation, the hole is represented by a small number of
slender surface elements which are defined in the parametric
space of the surface of the hole. The geometric information of the
hole is directly derived from its parametric surface of its CAD mod-
el [9]. This is a distinguishing advantage over the BEM, in which the
surface elements are defined in physical space, and the hole is
approximated by those elements. In addition, the parametric sur-
face elements are generated without much effort. If a surface is
not trimmed, the surface can be meshed easily using isoperimetric
lines. As most of tubular holes are represented with no trimmed
surfaces, there is no difficulty of meshing those surfaces.

The holes concerned in this paper are open-ended (through
holes), and intersect the outer surfaces of the body. The treatment
for this type of hole is troublesome and uneconomical in the BEM,
and so far no literatures are found about dealing with those holes.
Actually, in BEM analysis these holes are simplified as blind holes
usually and each hole is closed at the end by a circular disc [1-6]. In
this paper, a family of triangular boundary elements with negative
parts is proposed. Negative parts are designed specially to repre-
sent the ends of the through holes. Using these special elements,
the end faces intersected by holes can also be meshed by a small
number of surface elements.

After discretization of Eq. (1) using surface elements, the
numerical integration of all integrals is carried out by the same
program codes, which are developed with the integration tech-
niques in Refs. [8,9]. It is not required to pay additional attention
to integrals over small holes, such as an offset from the pipe sur-
face to the pipe central line is made for each node located at the
pipe surface [3]. This special treatment will introduce local errors.

3. Special surface elements for modeling of end-opened tubular
holes

3.1. Tube element

As mentioned previously, the hole can be represented by a
number of slender surface elements with parametric from. This
type element is referred to as ‘tube element’ here, which is an
extension of the ‘hole element’ proposed by Banerjee and Henry
et al. [3-6]. A hole, even without circular or elliptical section, can
be represented by several tube elements exactly in geometry.
Fig. 1 shows a slender hole is modelled by four tube elements. This
type element shown in Fig. 2(a) is constructed by four isoparamet-
ric lines in the parametric space of the hole surface, which is noted
by (x,y) (see Fig. 2(b)). In the space, y is along tube’s length, while
x is along the circumferential direction taking a value from 0 to 27.

To perform numerical integration, the following linear transfor-
mation is applied to map a tube element into a local coordinate
system (¢&,1)

{5_(’1"3’)/“  nel-1] (5)
n=-yo/b
Xo = (X2 +X1)/2 a=(x,—x1)/2
h 5= (v d oy
w ere{)ﬂ/—(yz+y1)/2 an {b—(J’2J’1)/2

Fig. 1. A tubular hole modelled by four tube elements.
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Fig. 2. A tube element, ‘o’ denotes an element vertex and ‘e’ denotes an
interpolating node. (a) Element in physical space; (b) element in parametric space
of the surface; (c) element mapped into a local coordinate system.

The interpolating nodes are not shared in neighbor elements,
thus the variation of approximated field variable is discontinuous
between the elements. For each element, the nodes are symmetri-
cally distributed inside it, as shown in Fig. 2(c). An offset from the
associated element vertex is taken to locate each node, and the
node location is determined by two offset parameters, «; and o5.
In this paper, o, is taken a value of { and } for the three nodes
and four nodes used in the in circumferential direction, respec-
tively. o, is set as L.

To use the same shape functions from Refs. [4,5,7] in this
discontinuous element, two different linear transformations are
applied in circumferential and longitudinal directions, respec-
tively. In the circumferential direction, the following transforma-
tion from ¢ to x is employed

X =(¢+1.0)m— X0 (6)

where x, = Z for three nodes used in the direction, and x, = Z for
four nodes.

Using this transformation, for three nodes, the circular shape
functions proposed in Refs. [4,5] are rewritten as

M°(§)=%+%cos§

oy V3 -1 o 7
M(x)_§+Tsmx—§cosx (7)
M2(§)=%7?smx77cosx

The circular shape functions with four nodes, which were first
developed by Ref. [7], are expressed as

MO(Q):M%COSQ
M1(§):1 lsinz—Lleos %
272 2 8)
~ (~1+4cosx) -
1\/12(X):72 cos x
111,
Mg(x)_i—ismx—icos X

The linear transformation in the longitudinal direction is expressed
as

n
=" o 0,1 9
P=1o g %O (©)
If a quadratic variation is taken, the shape functions are represented
as

N° = —1B(1 - p)
N'=1p1+p) (10)
N? = (1+p)(1-p)

After dividing the mth hole into Ny number of tube elements
together with using the shape functions mentioned above, Eq. (3)
can be discretized as

Ny
I = Z /F . G(s,y)[M*(s)N(s) — M*(y)N' ()T dI y(s)

Num
=3 [, FWM SN (5)g7drhs) (a1

in which the subscripts mi is used to denote the ith tube element on
the mth hole, T*” and ¢*” are nodal values of temperature and flux
on the surface of the tube element. Summation over o and 7y is
implied. o ranges from 1 to the number of the nodes in circumfer-
ential direction, and y ranges from 1 to the number of the nodes
along the length of the hole.

It should be noticed that in Eq. (11) no geometric approxima-
tion is applied. For obtaining geometry exactly, we first obtain
the surface parametric coordinates x and y from local integration
points using Eq. (5), and then the geometry data is directly calcu-
lated from the parametric surface with the parameters: x and .
This calculation is completed using the parametric formulation of
the surface, which is available from its B-rep data of the CAD mod-
el. The temperatures and fluxes on a hole vary in the longitudinal
as well as in the circumferential direction, which is exactly the

(a)

Fig. 3. The two types of meshes for the surface with five small holes. (a) Triangular elements with negative parts. (b) Traditional triangular elements.

(b)
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Fig. 4. A triangular element with negative parts. (a) Element in physical space. (b) Element in parametric space of the surface. (c¢) Element mapped into a local coordinate

system.

same as in Refs. [4,5]. For example, the temperature variations can
be expressed as

T = M*(s)N’(s)T* (12)

3.2. Triangular elements with negative parts

When an open-ended tubular hole intersects an outer surface of
the body, the surface is trimmed with small holes. To avoid using a
fine mesh to describe each hole, a class of new triangular discon-
tinuous elements with negative parts is developed in this section.
The local regions around the hole ends can be meshed with a small
number of these elements instead of a large number of traditional
elements used in Ref. [9], as illustrated in Fig. 3. Every hole is
decomposed as several negative parts, which are located at the cor-
ners of the elements around the hole. The center of the hole is coin-
cident with the one of vertices of those elements. Before mesh
generation, all centers of the holes are treated as hard points,
which are the locations of the nodes in the final mesh. The task
of meshing the surface with hard points can be completed in an
easy manner with existing meshing techniques. This is why the
negative parts are designed at the corners of the elements, not in-
side them.

Fig. 4 shows a triangular element with two negative parts in dif-
ferent spaces. The negative parts are not drawn in Fig. 4(b) and (c).
As the tube element, this element is also defined in the surface
parametric space (x,y) by three or six vertices with parametric
coordinates as shown in Fig. 4(b). And Fig. 4(c) depicts the element
in the local coordinate system (¢&,#) mapped from the space (x, ).
If three vertices are employed, the following linear map is used
from the space (¢,#) to (X,y)

{56 =YL bEmx &
y= Zi}:ld)i(éyrl)}zi

in which ¢1 = ¢, ¢ =7 and ¢3 =1 - ¢ - 5. Naturally, when six verti-
ces are involved, the quadratic functions of ¢; can be available from
the traditional boundary elements [1,2], where i from 1 to 6.
When linear interpolation of field variables is taken, three inter-
polating nodes are used. These nodes are shown in Fig. 4(c) with
indices of 1, 2, and 3, which are located at midlines of the triangu-
lar element. The local coordinates of the nodes are set by
(0.54,0.5%), (1 —0.54,0.52) and (0.54,1 — 0.52), respectively. 1 is
taken a value from 0.1 to 0.4 based on our experience. In this paper,
/. are specified as 0.3, and no nodes are located in the negative
parts. The triangular patch constructed with the inner nodes is
similar to the triangular element. Thus, the new linear interpolat-

nelo1] (13)

ing shape functions associated with three nodes can be expressed
as

@' =145(¢-052) @? =45 (n-052) @*="5(1-¢-n-0.57)
(14)

Similarly, the quadratic shape functions with six nodes can be easily
obtained as

@' =a2a-1)

@* =b@2b-1)

@*=(1-a-b)(2(1-a-b)-1)

¢@* =4ab (13)

@ =4b(1—a—b)
@® =4a(1 —a-b)

in which a = 1<, (¢ - 0.52) and b = -1, ( — 0.54). The locations
and indices of the six nodes are also shown in Fig. 4(c).
Using the shape functions mentioned above, Eq. (4) for the kth

element with Ny number of negative parts can be expressed as
= /F [Gs.Y)(97(8)— 97 (¥)T' —F(5,y) 0" (5)g7dI'} (5)
S /F [Gs.¥)(97(5) - @' (YT ~F(s,y) (s)a’ldI{ (s) (16)

where the subscripts s and i refer to the region of the whole element
and the region of the ith negative parts of the element, respectively
(see Fig. 4(a)), T and q” are nodal values of temperature and flux on
the element. Summation over 7y is implied, where y = 1 to the num-
ber of the nodes in the kth element.

In Eq. (16), the initial integrals over the whole element are com-
puted firstly. Then, we obtain the final integrals over the surface
region on the element by subtracting the integrals in all negative
parts from the initial integrals. In the computing process, the same
shapes functions from Eqs. (14), (15) are used. The radius of a neg-
ative part is equal to the hole radius, resulting in the size of the
negative area is evaluated from the hole data.

4. Numerical applications

The present method has been implemented in a code written in
C++ and tested with steady-state heat conduction problems on two
different structures: a block with a cylindrical hole and a block
with free shaped holes. The first simple structure is used to demon-
strate the method capacity of capturing the thermal concentration
as well as dealing with holes of very small or larger radii. The sec-
ond structure, which is more geometrically complicated, is consid-
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Table 1

Mesh information, CPU time and memory requirements for the first example.
Model type Element Node CPU time  Memory

number number (s) (MB)
BFM with new 296 896 2 19.27
elements

Conventional BFM 1490 4470 22 479.58
BEM 1490 4470 21 479.58

ered here to show the advantage of our method in modeling of
structures containing a large number of open-ended tubular holes.
The conductivity of the two structures is assumed to be 1. All com-
putation are carried out on the same desktop computer with Intel
(R) Core(TM)2 Duo CPU (2.33GHz).

4.1. Block with a small cylindrical hole

The first example considers problems in a 10 x 10 x 4 block
with an open-ended cylindrical hole. The slender hole is orthogo-
nal to the bottom face z = 0 of the block. The central line of the hole
passes through the block’s center with coordinates (5,5,2). Two
cases of the problems are handled regarding to different boundary
conditions and a specified radius of the hole.

In the first case, the radius is taken as 0.175. A uniform temper-
ature of 100 °C is applied to the face y = 0 of the block parallel to
the hole. The opposite face is maintained at a flux of 10. All other
faces of the block are insulated. For the purpose of comparison this
problem is solved by the present method, the BEM and the conven-

tional BFM without new proposed elements, respectively. The total
number of elements and nodes used in the three models are listed
in the first and second columns in Table 1. Figs. 5 and 6 show the
boundary meshes used in the new BFM and BEM, respectively. The
conventional BFM model has the same mesh distribution as in
the BEM.

In each computation, the numerical results of fluxes at the
internal locations are evaluated. These locations are distributed
on the line segment from (0.223,5,2) to (9.770,5,2). The numerical
results at the locations are shown in Fig. 7. It is clearly observed
that the thermal concentration is explored by the three schemes.
The variation of the fluxes obtained by the BFM with proposed ele-
ments is in good agreement with that of the conventional BFM and
the BEM. It is also found that the same level of the accuracy is ob-
tained by the present method, in which fewer elements (nodes) are
used when compared with two other schemes. The comparative
results have indicated that the current method can accurately cap-
ture the local thermal concentration by a small number of nodes.

The computational requirements of the CPU time and memory
used in different models are summarized in Table 1. As expected,
the proposed elements allows for a much efficient analysis with
substantial savings in both CPU time and memory. The advantage
of the proposed elements is likely to be magnified in the problems
involved a larger number of holes.

In the second case, the radius of the hole is specified as very
small values of 0.025 and 0.0175, compared with the side length
of the block. For the block with different radius, Dirichlet problems
are solved in which the essential boundary conditions are imposed
on all faces corresponding to a cubic reference solution. This solu-
tion is expressed as

(b)

Fig. 5. BFM mesh with proposed elements for a block with a cylindrical hole. (a) Boundary mesh with 296 elements and 896 nodes. (b) The hole modelled with only two tube

elements.

(b)

Fig. 6. BEM mesh with traditional elements for a block with a cylindrical hole. (a) Boundary mesh with 1490 elements and 4470 nodes. (b) The hole modelled with fine

traditional elements.
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Fig. 7. Variation in flux q along a specified line inside the block with a cylindrical
hole.
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T=x>+y>+2> —3yx* — 3xz*> — 3z° (17)

The inner evaluation points are uniformly distributed on the two
line segments. The one line segment has endpoints at (0.05,5,2) to

Table 2
Mesh information, CPU time and memory requirements for the second example.
d/  Method Element Node CPU time Memory
a number number (s) (MB)
0.2 BFM 387 1167 3 32.69
BEM 456 2736 16 179.68
0.3 BFM 341 1029 3 2542
BEM 380 2280 11 127.78
04 BFM 281 849 3 17.31
BEM 654 3924 23 369.58
0.5 BFM 245 741 2 13.12
BEM 654 3924 23 369.58

(4.95,5,2), and the other from (5.05,5,2) to (9.95,5,2). The boundary
evaluation points are uniformly distributed on the isoparametric
line segment with from (7,0.05) to (7,0.99) in the parametric space
of the pipe surface. In this space, x € (0,27) and y € (0,1). The
numerical results together with reference solutions of the fluxes at
internal points are shown in Fig. 8. It is seen the numerical results
are in good agreement with the reference solutions, even at internal
locations very close to the pipe surface (up to 0.02 away from pipe
surface). Fig. 9 presents the variation of the flux component g, along
the specified line on the pipe surface. It is seen that the numerical
results are also accurate, even though there is a slight deviation from
exact solution at two ends and middle of the line. The reason for this
deviation is that the approximation functions between neighboring
tube elements are discontinuous. And there are only two tube ele-
ments used to approximate the field variables.

It should be pointed out that the hole radius is very small in this
test. There is a ratio up to 800 of the maximum side length of the
block to the minimal radius. The accurate numerical results have
shown that the present method can deal with the holes with very
small radii effectively.

4.2. Block with a larger cylindrical hole

For the purpose of studying the capacity of a singular tube ele-
ment in capturing heat transfer pattern, the same 10 x 10 x 4
block but with a larger cylindrical hole is used in this example.
In this study, five cases with different values of d/a are considered
(see Table 2), where d is the diameter of the hole, and a is the max-
imum side length of the block (a = 10). For each case, the boundary
conditions are given as the same in the first test case of Section 4.1.
The evaluation points are inside the block, which are uniformly
distributed on the line segments with two endpoints at
(0.01,5,2) and (4.99 — d/2,5,2). The distance from the second end-
point to the hole surface is only 0.01. This is to say that the point is
very close to the hole surface.

Table 2 presents the mesh information and computational
requirements for all cases used in the BFM and BEM. In the BFM
models, the hole surface is modelled by a singular tube element
with 9 nodes or 12 nodes, while all other surfaces are modelled
by 3-noded linear triangular elements. In the BEM models, all sur-
faces are divided into 6-noded quadratic triangular elements.
Fig. 10 shows the boundary elements employed in the case of d/
a=0.2. The new triangular elements with negative parts are not
applied over the surfaces intersected by the hole, since the hole
diameter is too large to be represented by the new elements.

Fig. 11 shows the results of fluxes at evaluation points obtained
by the current method compared with the BEM results. It is clearly
found that the there is a good agreement between the results, even
at point very close to the hole surface. The discrepancy at the larger
hole ratio is to expected, because the flux field around the hole is
too complex to be represented by the very coarse surface mesh.
Again, the heat concentration is well captured by a singular tube
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Fig. 10. Two types of boundary meshes for the block with a cylindrical hole of diameter d = 2. (a) BFM mesh with 387 elements and 1167 nodes. (b) BEM mesh with 456

elements and 2736 nodes.

T X T ¥ T ¥ T ¥ T ® T ¥ T ¥ T ¥ T

26 4 dla=0.5 =1
] Conventional BEM Q
44| © BFM-12 noded tube element i
4 BFM-9 noded tube element dla=0.4
(A%
22 4
204
(=2
5 18 o
[

Fig. 11. Variation in flux g along the line segments for different values of d/a.

element in the cases of d/a=0.2, 0.3, 0.4. The accepted results are
also obtained in the case of d/a=0.5. From Fig. 11, it is also ob-
served that the results using a 12-noded tube element are better
than that with a singular 9-noded element in the cases of the larg-

est hole ratio. From the last two columns in Table 2, it is clear that
computational costs used in the BFM are less than that of the con-
ventional BEM.

4.3. Block with free shaped holes

Finally, we study the steady-state heat conduction in a
10 x 10 x 10 block including a large number of small holes in
the shape of free shaped tubes. This complicated structure is
shown in Fig. 12(a). Fig. 12(b) depicts a local enlarged geometry.
It is seen that these tubular holes are designed in different posi-
tions, although stretch in nearly the same direction. The total num-
ber of holes is 100. The radii of all the holes are identical and equal
to 0.05. A Dirichlet problem is solved for which the essential
boundary conditions are imposed on all the faces corresponding
to Eq. (17). The all surfaces of this complicated structure are dis-
cretized with only 1994 boundary elements (totally 7782 nodes).
Three slender tube elements are used for each tube. The required
CPU time and memory for this problem are 1453.49 MB and
337 s, respectively.

Sample points are uniformly spaced on the isoparametric line
segment from (0.5,0.05) to (0.5,0.95) of a pipe surface, for which
two coordinate parameters x and x are set in the interval [0,1].
Fig. 13 shows the numerical results of normal flux g and flux com-

Fig. 12. A block with a large number of tubular holes. (a) The distribution of holes in the block. (b) A local enlarged geometry.
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Fig. 13. Normal flux q and flux component q, along the specified isoparamtric line
on a tubular hole.

ponent g, at the sample points. It is observed that numerical
results are in excellent agreement with the reference solution.
When the points are very close to the tube end, the results are also
very precise. This indicated that it is reasonable and effective to
utilize the elements with negative parts around the tube ends.

We should point out here that it is impossible to obtain a rea-
sonable discretization with domain elements used in the FEM for
this geometry. Much effort is also required to discretize all surfaces
with high quality boundary elements in the BEM. However, in our
method, two types of new discontinuous elements are used to
describe tubular holes and their ends, which can be done very eas-
ily. It should be also pointed out each tubular hole is modelled by a
NURBS surface in the CAD model of this complicated structure. The
geometry information of the tubes, such as coordinates, can be di-
rectly available from the CAD model by making use of the Open API
(Application Program Interface) of the CAD software.

5. Conclusions

Using the BFM, an effective numerical model for steady-state
heat conduction analysis of solids with small open-ended tubular
holes has been proposed. In order to describe these holes relative
easily but keep exact geometry, two types of special surface ele-
ments have been developed, namely, the tube element and trian-
gular element with negative parts. A free shaped hole can be
represented by a small number of these elements instead of many
fine boundary elements or approximation model with “hole ele-
ment” in existing BEM models.

The analysis was shown to be very efficient as well as highly
accurate for a range of problems. It was also shown that the local

thermal concentration can be well captured by tube elements. An
attractive feature of the present implementation lies in the fact
that the tubular holes can be exactly modelled by a few of the pro-
posed elements. Also, the radii of the holes can be changed without
rebuilding the main BFM mesh, making reanalysis being taken
easy. All features not only substantially simplify the discretization
task for the solid with tubular holes, but also result in significant
saving in computing cost and time. Thus, the present method is
especially applicable for analysis of the solids with tubular holes
or tubular fibers. Extending the method to be applied in study on
the thermal behavior of the composites containing a large number
of fibers is a subject for future research.

Acknowledgements

This work was supported in part by National Science Founda-
tion of China under grant numbers 10972074 and 11172098, and
in part by National 973 Project of China under grant number
2010CB328005.

References

[1] M.R. Barone, D.A. Caulk, Special boundary integral equations for approximate
solution of potential problems in three-dimensional regions with slender
cavities of circular cross section, IMA ]. Appl. Math. 35 (1985) 311-325.

[2] G.F. Dargush, P.K. Banerjee, Advanced development of the boundary element
method for steady-state heat conduction, Int. J. Numer. Methods Eng. 28
(1989) 2123-2143.

[3] D.P. Henry, P.K. Banerjee, Elastic analysis of three-dimensional solids with
small holes by BEM, Int. Numer. Methods Eng. 31 (1991) 369-384.

[4] P.K. Banerjee, D.P. Henry, Elastic analysis of three-dimensional solids with fiber
inclusions by BEM, Int. . Solids Struct. 29 (1992) 2423-2440.

[5] J. Chatterjee, D.P. Henry, F. Ma, P.K. Banerjee, An efficient BEM formulation for
three-dimensional steady-state heat conduction analysis of composites, Int. J.
Heat Mass Transfer 51 (2008) 1439-1452.

[6] F. Ma, J. Chatterjee, D.P. Henry, P.K. Banerjee, Transient heat conduction
analysis of 3D solids with fiber inclusions using the boundary element method,
Int. J. Numerical Methods Eng. 73 (2008) 1113-1136.

[7] C.B. Federico, J.M. Rogerio, A family of hole boundary elements for modeling
materials with cylindrical voids, Eng. Anal. Boundary Elem. 32 (2008) 578-590.

[8] J.M. Zhang, X.Y. Qin, X. Han, G.Y. Li, A boundary face method for potential
problems in three dimensions, Int. J. Numer. Methods Eng. 80 (3) (2009) 320-
337.

[9] X.Y. Qin, ].M. Zhang, G.Y. Li, XM. Sheng, Q. Song, D.H. Mu, An element
implementation of the boundary face method for 3D potential problems, Eng.
Anal. Boundary Elem. 34 (2010) 934-943.

[10] Y.X. Mukherjee, S. Mukherjee, The boundary node method for potential
problems, Int. ]. Numer. Methods Eng. 40 (1997) 797-815.

[11] M.K. Chati, S. Mukherjee, The boundary node method for three-dimensional
problems in potential theory, Int. J. Numer. Methods Eng. 47 (2000) 1523-
1547.

[12] J.M. Zhang, Z.H. Yao, H. Li, A hybrid boundary node method, Int. J. Numer.
Methods Eng. 53 (2002) 751-763.

[13] ]J.M. Zhang, Z.H. Yao, Meshless regular hybrid boundary node method, Comput.
Model. Eng. Sci. 2 (2001) 307-318.

[14] YJ. Liu, Analysis of shell-like structures by the boundary element method
based on 3-D elasticity: formulation and verification, Int. J. Numer. Methods
Eng. 41 (1998) 541-558.



	Steady-state heat conduction analysis of solids with small open-ended tubular  holes by BFM
	1 Introduction
	2 Boundary integral equation formulation with end-opened tubular holes
	3 Special surface elements for modeling of end-opened tubular holes
	3.1 Tube element
	3.2 Triangular elements with negative parts

	4 Numerical applications
	4.1 Block with a small cylindrical hole
	4.2 Block with a larger cylindrical hole
	4.3 Block with free shaped holes

	5 Conclusions
	Acknowledgements
	References


